Zoledronate Attenuates Accumulation of DNA Damage in Mesenchymal Stem Cells and Protects Their Function.
نویسندگان
چکیده
Mesenchymal stem cells (MSCs) undergo a decline in function following ex vivo expansion and exposure to irradiation. This has been associated with accumulation of DNA damage and has important implications for tissue engineering approaches or in patients receiving radiotherapy. Therefore, interventions, which limit accumulation of DNA damage in MSC, are of clinical significance. We were intrigued by findings showing that zoledronate (ZOL), an anti-resorptive nitrogen containing bisphosphonate, significantly extended survival in patients affected by osteoporosis. The effect was too large to be simply due to the prevention of fractures. Moreover, in combination with statins, it extended the lifespan in a mouse model of Hutchinson Gilford Progeria Syndrome. Therefore, we asked whether ZOL was able to extend the lifespan of human MSC and whether this was due to reduced accumulation of DNA damage, one of the important mechanisms of aging. Here, we show that this was the case both following expansion and irradiation, preserving their ability to proliferate and differentiate in vitro. In addition, administration of ZOL before irradiation protected the survival of mesenchymal progenitors in mice. Through mechanistic studies, we were able to show that inhibition of mTOR signaling, a pathway involved in longevity and cancer, was responsible for these effects. Our data open up new opportunities to protect MSC from the side effects of radiotherapy in cancer patients and during ex vivo expansion for regenerative medicine approaches. Given that ZOL is already in clinical use with a good safety profile, these opportunities can be readily translated for patient benefit.
منابع مشابه
DNA damage in dental pulp mesenchymal stem cells: An in vitro study
The aim of this study was to evaluate the potential use of a DNA comet assay, DNA fragmentation fluorimetric assay and reactive oxygen species levels as potential biomarkers of genome conditions of dental pulp stem cells (DPSCs) isolated from dog canine teeth. Mesenchymal stem cells were isolated from the dental pulp collected from dog teeth. The results obtained suggest the ideal moment for cl...
متن کاملEffects of gamma radiation on adipose-derived mesenchymal stem cells of human breast tissue
Background: During radiation therapy, stromal cells surrounding the tumor (e.g mesenchymal stem cells) may affect the treatment outcomes. We aimed to investigate the effects of gamma radiation on the mRNA expression of cytokines, DNA damage and population doubling time (PDT) of adipose-derived mesenchymal stem cells (ASCs). Material and methods: ASCs were enzymatically extracted from breast tis...
متن کاملEvaluation of Therapeutic Effects of Autologous Bone Marrow Mesenchymal Stem Cells to Prevent the Progression of Chronic Nephropathy in Renal Transplant
Background Chronic allograft nephropathy(CAN) is one of the most common causes of chronic and end stage renal disease. It is defined with Mainly tubular atrophy and interstitial fibrosis and no evidence of any other etiology, or functional disorder that caused at least three months after transplantation . Control of risk factors (HTN,DM,HLP, …) and limiting usage of calcineurin inhibitors...
متن کاملMesenchymal Stem Cells: Interactions with Immune Cells and Immunosuppressive-Immunomodulatory Properties
Abstract Background and Objectives Recently, mesenchymal stem cells have attracted much attention in regenerative medicine and cell-based therapies. Mesenchymal stem cells are used in regenerative medicine mainly based on their capacity to differentiate into several cell lineages, low immunogenicity, and in particular their anti-inflammatory and immunosuppressive-immunomodulatory properties. ...
متن کاملEvaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2016